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Intorduction to Merge sort

p
\J
# On merge sort we apply # Merge-sort is a sorting
Divide and Conquer algorithm based on the
techniques in following steps divide-and-conquer
# Divide-and conquer is a paradigm
general algorithm design # Like heap-sort
paradigm: = It uses a comparator
= Divide : Given a sequence of n = It has O(n log n) running
elements (a[1],a[2],..,a[n]) time
§ﬁgt;[‘§72tff];‘?F§na][”'--a[”/ 2] # Unlike heap-sort
= Conquer: Each set is = It does not use an
individually sorted auxiliary priority queue
= Conquer: Resulting sorted m It accesses data in a
sequence are merged to sequential manner
produce a single sorted (suitable to sort data on a
sequence of n elements. disk)
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Merge-Sort

-
N
4 If the time for merging operantion is - Algorithm mergeSort(Iow,high)
propotional to n,then the computing time
for merge sort is described by the {
recurrence relation . :
& T)= a n=1 if(low<high) then
2T(n/2)+cn n>1 mid=(low+high)/2

When n is a power of 2, n=2k, we can solve .
this equatior{)y recursive method( succesive mergeSort(low,mid)

substitution gr iterative method) mergeSort(mid+1 high)'
T(n)=2(2T(nM4)+cn/2)+cn A ’
—4T(n/4)+2cn Merge(low,mid,high)

=4(2T(n/8)=cn/4)+2cn

=2kT(1)+kcn
=an-+cnlogn
T(n)=0(nlogn)
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Merging Two Sorted Sequences

Algorithm merge(low,mid,high)

{
h:=low:i:=high:j:=mid+1
while((h<=mid) and(j<=high))do

{
if(a[h]<=al[j])
{b[i]:=a[h];h:=h+1; }
else
{olil:==alil:j:=j+1;  }
=i+l
}
if(h>mid)
for k:=j to high do
{b[i]:=a[K];i:=i+1;
}
else

for k:=h to mid do
{b[i]:=a[Kk]:i:=i+1; }
for k:=low to high do a[k]:=b[K];




Merge-Sort Tree

| # An execution of merge-sort is depicted by a binary tree

= each node represents a recursive call of merge-sort and stores
» unsorted sequence before the execution and its partition
» sorted sequence at the end of the execution

= the root is the initial call
= the leaves are calls on subsequences of size 0 or 1
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Execution Example
# Partition

N

729413861 ]
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Execution Example (cont.)

N

# Recursive call, partition

(729413861 ]

______________________________________________
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Execution Example (cont.)

N

# Recursive call, partition

(729413861 ]

(72194
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“Execution Example (cont.)

# Recursive call, base case

(729413861 ]
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Execution Example (cont.)

N

#Recursive call, base case

(729413861 ]
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“Execution Example (cont.)

#Merge

(729413861 ]

(72194 ]
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Execution Example (cont.)

N
\J

#Recursive call, ..., base case, merge
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“Execution Example (cont.)

#Merge

(729413861 ]

s
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“Execution Example (cont.)

#Recursive call, ..., merge, merge

(729413861 ]
/\.
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“Execution Example (cont.)

#Merge

729413861 5123467809]
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Summary of Sorting Algorithms

L/

N

Algorithm Time |Notes

@ slow

selection-sort O(n? |® in-place
# for small data sets (< 1K)

# Slow

insertion-sort O(n?) # in-place
# for small data sets (< 1K)

# fast

heap-sort | O(nlog n) | in-place

# for large data sets (1K — 1M)
# fast

merge-sort | O(nlog n) |4 sequential data access
# for huge data sets (> 1M)
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Application of Merge Sort

N

# Tape drive
# Disk drive
# Online sorting
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Scope of Merge Sort

N

# Parallel processing

# Optimizing merge
sort
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Assignment

N

# Q.1)Prove that efficiency of merge sort is
O(nlogn).
# Q.2)Explain merge sort with example.

# Q.3)Compare merge sort with Quick sort
& Heap sort.

© 2004 Goodrich, Tamassia Merge Sort

19




