Merge Sort

[72|94—>2479]

/\
[7|2—>27] [9|4—>49]
O~
[7—)7] [2—)2] 959 44 4

© 2004 Goodrich, Tamassia Merge Sort

Intorduction to Merge sort

p
\J
On merge sort we apply # Merge-sort is a sorting
Divide and Conquer algorithm based on the
techniques in following steps divide-and-conquer
Divide-and conquer is a paradigm
general algorithm design # Like heap-sort
paradigm: = It uses a comparator
= Divide : Given a sequence of n = It has O(n log n) running
elements (a[1],a[2],..,a[n]) time
§ﬁgt;[‘§72tff];‘?F§na][”'--a[”/ 2] # Unlike heap-sort
= Conquer: Each set is = It does not use an
individually sorted auxiliary priority queue
= Conquer: Resulting sorted m It accesses data in a
sequence are merged to sequential manner
produce a single sorted (suitable to sort data on a
sequence of n elements. disk)

© 2004 Goodrich, Tamassia Merge Sort 2

Merge-Sort

-
N
4 If the time for merging operantion is - Algorithm mergeSort(Iow,high)
propotional to n,then the computing time
for merge sort is described by the {
recurrence relation . :
& T)= a n=1 if(low<high) then
2T(n/2)+cn n>1 mid=(low+high)/2

When n is a power of 2, n=2k, we can solve .
this equatior{)y recursive method(succesive mergeSort(low,mid)

substitution gr iterative method) mergeSort(mid+1 high)'
T(n)=2(2T(nM4)+cn/2)+cn A ’
—4T(n/4)+2cn Merge(low,mid,high)

=4(2T(n/8)=cn/4)+2cn

=2kT(1)+kcn
=an-+cnlogn
T(n)=0(nlogn)

© 2004 Goodrich, Tamassia Merge Sort 3

N

© 2004 Goodrich, Tamassia

Merging Two Sorted Sequences

Algorithm merge(low,mid,high)

{
h:=low:i:=high:j:=mid+1
while((h<=mid) and(j<=high))do

{
if(a[h]<=al[j])
{b[i]:=a[h];h:=h+1; }
else
{olil:==alil:j:=j+1; }
=i+l
}
if(h>mid)
for k:=j to high do
{b[i]:=a[K];i:=i+1;
}
else

for k:=h to mid do
{b[i]:=a[Kk]:i:=i+1; }
for k:=low to high do a[k]:=b[K];

Merge-Sort Tree

| # An execution of merge-sort is depicted by a binary tree

= each node represents a recursive call of merge-sort and stores
» unsorted sequence before the execution and its partition
» sorted sequence at the end of the execution

= the root is the initial call
= the leaves are calls on subsequences of size 0 or 1

[72|94—>2479]

712527] (914> 49]

[7—)7] [9—)9] 4 >4

© 2004 Goodrich, Tamassia Merge Sort 5

Execution Example
Partition

N

729413861]

© 2004 Goodrich, Tamassia Merge Sort 6

Execution Example (cont.)

N

Recursive call, partition

(729413861]

__

© 2004 Goodrich, Tamassia Merge Sort 7

Execution Example (cont.)

N

Recursive call, partition

(729413861]

(72194

© 2004 Goodrich, Tamassia Merge Sort

“Execution Example (cont.)

Recursive call, base case

(729413861]

/\
Fase) | |
d A{) %

|
/A AN AN LN

=7 () U O OO0)

© 2004 Goodrich, Tamassia Merge Sort

Execution Example (cont.)

N

#Recursive call, base case

(729413861]

© 2004 Goodrich, Tamassia Merge Sort 10

“Execution Example (cont.)

#Merge

(729413861]

(72194]

/\ ______

(212527 S o

7—)7 2—)2

© 2004 Goodrich, Tamassia Merge Sort 11

Execution Example (cont.)

N
\J

#Recursive call, ..., base case, merge

(729413861]

(72194]

/\

(712527 (94549 o
~ N R

[7—)7] [2—)2] 9—)9 4—)4

© 2004 Goodrich, Tamassia Merge Sort 12

“Execution Example (cont.)

#Merge

(729413861]

s

7219452479

AN

712527 [945409]

© 2004 Goodrich, Tamassia Merge Sort 13

“Execution Example (cont.)

#Recursive call, ..., merge, merge

(729413861]
/\.
(7219452479 [3861 51368
T AN
712527 [945409] 38538 [61->156]

AN N AN AN

757 (252 (959 (454 (353 8>8 (656 (151

© 2004 Goodrich, Tamassia Merge Sort 14

“Execution Example (cont.)

#Merge

729413861 5123467809]

=

(7219452479 (3861136 8]
d /][\)| % |

AN N AN AN

757 [252] |99 454 [353) o8 (656 (11

© 2004 Goodrich, Tamassia Merge Sort 15

Summary of Sorting Algorithms

L/

N

Algorithm Time |Notes

@ slow

selection-sort O(n? |® in-place
for small data sets (< 1K)

Slow

insertion-sort O(n?) # in-place
for small data sets (< 1K)

fast

heap-sort | O(nlog n) | in-place

for large data sets (1K — 1M)
fast

merge-sort | O(nlog n) |4 sequential data access
for huge data sets (> 1M)

© 2004 Goodrich, Tamassia Merge Sort 16

Application of Merge Sort

N

Tape drive
Disk drive
Online sorting

© 2004 Goodrich, Tamassia Merge Sort

17

Scope of Merge Sort

N

Parallel processing

Optimizing merge
sort

© 2004 Goodrich, Tamassia Merge Sort

18

Assignment

N

Q.1)Prove that efficiency of merge sort is
O(nlogn).
Q.2)Explain merge sort with example.

Q.3)Compare merge sort with Quick sort
& Heap sort.

© 2004 Goodrich, Tamassia Merge Sort

19

