Intorduction to Merge sort

- On merge sort we apply
 Divide and Conquer
 techniques in following steps
- Divide-and conquer is a general algorithm design paradigm:
 - Divide: Given a sequence of n elements (a[1],a[2],..,a[n])
 - Split into two sets a[1],..a[n/2] and a[n/2+1],a..[n]
 - Conquer: Each set is individually sorted
 - Conquer: Resulting sorted sequence are merged to produce a single sorted sequence of n elements.

- Merge-sort is a sorting algorithm based on the divide-and-conquer paradigm
- Like heap-sort
 - It uses a comparator
 - It has $O(n \log n)$ running time
- Unlike heap-sort
 - It does not use an auxiliary priority queue
 - It accesses data in a sequential manner (suitable to sort data on a disk)

Merge-Sort

If the time for merging operantion is propotional to n,then the computing time for merge sort is described by the recurrence relation

```
♦ T(n)= a  n=1  2T(n/2)+cn  n>1
```

When n is a power of 2, n=2k, we can solve this equation by recursive method(succesive substitution or iterative method)

```
T(n)=2(2T(n/4)+cn/2)+cn
=4T(n/4)+2cn
=4(2T(n/8)=cn/4)+2cn
```

```
=2kT(1)+kcn
=an+cnlogn
T(n)=O(nlogn)
```

```
Algorithm mergeSort(low,high)
{
    if(low<high) then
       mid=(low+high)/2
       mergeSort(low,mid)
       mergeSort(mid+1,high);
    Merge(low,mid,high)
```

Merging Two Sorted Sequences

```
Algorithm merge(low,mid,high)
    h:=low:i:=high:j:=mid+1
    while((h<=mid) and(j<=high))do
         if(a[h] \le a[j])
         \{b[i]:=a[h];h:=h+1;
         else
         \{b[i]:=a[j]:j:=j+1;
         i:=i+1;
    if(h>mid)
        for k:=j to high do
             \{b[i]:=a[k];i:=i+1;
    else
        for k:=h to mid do
             \{b[i]:=a[k]:i:=i+1;
    for k:=low to high do a[k]:=b[k];
```

Merge-Sort Tree

- An execution of merge-sort is depicted by a binary tree
 - each node represents a recursive call of merge-sort and stores
 - unsorted sequence before the execution and its partition
 - sorted sequence at the end of the execution
 - the root is the initial call
 - the leaves are calls on subsequences of size 0 or 1

Execution Example

Partition

© 2004 Goodrich, Tamassia

Recursive call, partition

Recursive call, partition

Recursive call, base case

© 2004 Goodrich, Tamassia

Recursive call, base case

© 2004 Goodrich, Tamassia

Recursive call, ..., base case, merge

© 2004 Goodrich, Tamassia

$$7 \rightarrow 7$$
 $2 \rightarrow 2$

$$9 \rightarrow 9 \qquad \boxed{4 \rightarrow 4}$$

Recursive call, ..., merge, merge

© 2004 Goodrich, Tamassia

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	$O(n^2)$	♦ slow♦ in-place♦ for small data sets (< 1K)
insertion-sort	$O(n^2)$	♦ slow♦ in-place♦ for small data sets (< 1K)
heap-sort	$O(n \log n)$	♦ fast♦ in-place♦ for large data sets (1K — 1M)
merge-sort	$O(n \log n)$	fastsequential data accessfor huge data sets (> 1M)

Application of Merge Sort

- Tape drive
- Disk drive
- Online sorting

Scope of Merge Sort

- Parallel processing
- Optimizing merge sort

Assignment

- Q.1)Prove that efficiency of merge sort is O(nlogn).
- Q.2) Explain merge sort with example.
- Q.3)Compare merge sort with Quick sort
 & Heap sort.